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The problem of convection in a rotating cylindrical annulus heated from the outside 
and cooled from the inside is considered in the limit of high rotation rates. The 
constraint of rotation enforces the two-dimensional character of the motion when the 
angle of inclination of the axisymmetric end surfaces with respect to the equatorial 
plane is small. Even when the angle of inclination is large only the dependences on 
the radial and the azimuthal coordinates need to be considered. The dependence on 
time a t  the onset of convection is similar to that of Rossby waves. But a t  higher 
Rayleigh numbers a transition to vacillating solutions occurs. In  the limit of high 
rotation rates simple equations can be derived which permit the reproduction and 
extension of previous numerical results. 

1. Introduction 
Thermal convection in rotating spherical fluid shells is one of the basic physical 

problems of interest to astrophysicists and planetary scientists. Although the linear 
theory for this problem has been reasonably well understood - for reviews we refer 
to Eltayeb (1981) and Busse (1982) -the nonlinear properties of the problem have 
barely been studied. Fortunately, much can be learned about the problem in spherical 
shells from the simpler problems of convection in a layer with a vertical axis of 
rotation and in a layer with an axis of rotation at a right angle to gravity. The latter 
problem can be realized in the form of a rotating cylindrical annulus in which the 
centrifugal force replaces gravity. The annulus model has thus become the primary 
tool for the investigation of convection in the equatorial region of spherical shells. 
In fact, the equatorial region encompasses the entire region outside the cylindrical 
surface touching the inner spherical boundary at  its equator. 

The problem of convection in a layer with a vertical axis of rotation describes 
convection in the polar regions of spherical shells. This problem is of lesser importance 
since convection in the polar region is more strongly impeded by the Coriolis force 
than in the equatorial region. The problem is also less urgent because a number of 
studies of the nonlinear properties of convection in layers with a vertical axis of 
rotation have already been done (see Busse 1982 for references). 

A basic feature of convection in a rotating cylindrical annulus bounded by inclined 
surfaces in the axial direction is the wave-like propagation of the columnar motions 
in the azimuthal direction. This time dependence gives rise to phase shifts between 
the radial velocity component and the perturbation of the temperature field which 
in turn lead to new types of instabilities which do not occur in the case of parallel 
end surfaces or in non-rotating layers. These instabilities tend to break the remaining 
symmetries of the problem and introduce new features such as an asymmetric mean 
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FIGURE 1. Geometrical configuration of the rotating cylindrical annulus. 

zonal flow or a vacillating time dependence which appears to give rise to a chaotic 
time dependence at higher Rayleigh numbers. These phenomena have been found in 
the numerical analysis of the nonlinear problem by Or & Busse (1986, hereinafter 
referred to as OB). In the present paper an asymptotic theory capable of describing 
these features is outlined. 

2. Mathematical formulation of the problem 
We consider a fluid-filled cylindrical annulus rotating about its axis of symmetry 

with angular velocity D as shown in figure 1. The inner and outer cylindrical walls 
are kept at the constant temperatures To &+AT respectively, such that a density 
gradient opposite to the direction of the centrifugal force is established as the basic 
state of the system. In application to planetary problems, the analogous buoyancy 
effect would be provided by the opposite density gradient since the component of 
gravity perpendicular to the axis of rotation is in the opposite direction to the 
centrifugal force. For our laboratory application, the gravity force acting parallel 
to the vertical axis of rotation could be taken into account (Busse 1970), but it has 
little effect as long as the centrifugal force is of the s%me order as or larger than 
gravity. 

Using the gap width D of the annulus as the lengthscale, D2/v  as the timescale, 
where v is the kinematic viscosity, and PAT as the temperature scale, where P is 
the Prandtl number, the Navier-Stokes equations of motion and the heat equation 
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for the deviation 8 from the basic state of pure conduction can be written in the 

(2.1 a )  
form 

- v + ~ - V v + 2 E - ~ k x  v = -Vn-RiB+V2v,  

v * v  = 0, (2.1 b )  

P --+v*V 8 = - i * v + V 2 B .  (2 . lc )  
c t  ) 

The unit vectors i and k point in radial and axial directions. The Ekman, Prandtl 
and Rayleigh numbers are defined by 

V V yD3Q2ro AT 
E E -  P=-, R e  

D2Q’ K VK 

respectively, where K is the thermal diffusivity, y is the positive coefficient of thermal 
expansion, and r,, is the mean radius. The Boussinesq approximation has been used 
in that the variation of density is only taken into account in connection with the body 
force term. In Appendix A a formulation of the problem with strong variations of 
density will be given. In  order to study the problem in its most simple mathematical 
form, we assume the small-gap approximation, D / r ,  4 1. Thus we have already 
neglected spatial variations of the centrifugal force and of the temperature gradient 
of the static state in writing (2 .1) .  We also introduce a Cartesian system of coordinates 
with the x- and z-coordinates in the directions of i and k and the y-coordinate in the 
azimuthal direction. 

In order to eliminate (2.1 b )  we introduce the following general representation for 
a solenoidal velocity field : 

(2 .3)  

By operating with k . V  x and k . V  x (V x . . . ) on (2.1 a )  we obtain two scalar equations 
for the functions 4, $, 

v = V x (V x k + ) + V  x k$. 

(2.4a)  

a 
at 
- V 2 A z # + k . V x  ( V X [ V * V V ] ) + ~ E - ~ ~ , A , $  = -Ra: ,8+VZA2$,  (2 .4b)  

where a, indicates the derivative with respect to y and A, denotes V 2 -  ( k * V ) 2 .  The 
heat equation ( 2 . 1 ~ )  can be rewritten in the form 

P - 8 + V  x (V x k + ) . V 8 + V 8  x V $ * k  = -a,$-a?j,++V28. ( 2 . 4 ~ )  

The boundary condition that the normal velocity component and the temperature 
8 vanish on the cylindrical walls can be written in the form 

a,$+a;,+ = 8 = 0 a t x  = ++. ( 2 . 5 ~ )  

A t  the conical surfaces bounding the annular domain in the axial direction insulating 
boundaries will be assumed, 

E t  1 

(2 .5b)  
L 

2 0  v0(a,$+a;,#)TA2# = ~ ~ a , 8 + a , 0  = 0 a t z  = +--, 
where v0 is the tangent of the angle x B  between the conical surfaces and the equatorial 
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plane of symmetry. The axial length L of the annular region is large compared with 
D in typical applications, in which case the particular boundary condition (2.5b) for 
i3 becomes unimportant. A finitely conducting boundary, for example, will change 
the solution i3 only throughout a boundary layer of thickness D at most. In the 
following we shall discuss the linearized version of the problem (2 .4) ,  (2 .5)  first in the 
case of small 7,; the extension to the case of finite 7, is given in appendix B. 

3. The case of slightly inclined end surfaces 
According to the Taylor-Proudman theorem nearly steady motions of small 

amplitude relative to a rotating system must be nearly independent of the z- 
coordinate in the direction of the rotation axis unless viscous friction is comparable 
with the Coriolis force. This property suggests the ansatz 

where $ as well as 4 are of the order 7, which is assumed to be small in this section. 
Neglecting nonlinear terms we find from (2.4a, c )  after averaging over z and using 
the boundary condition (2 .5b)  

- - A ~  AZ-7*ay  aye, = 0. [(h 1 1 

where q* is defined by 

( 3 . 2 ~ )  

(3 .2b)  

Equations (3 .2)  are solved by 

(3 .4)  
- ia 

' 0  = $0 P(iw + a) + nz+a2 
$, = sin n(z + t )  exp {iay + (iw + a) t ] ,  

provided the dispersion relation 

(P(io+ a) + a2 +n2) [(iw + a+nz + a2) (n2 + az) + iay*] - R,a2 = 0 (3 .5)  

is satisfied. It is of interest to inspect this equation in the case when dissipative effects 
are neglected, i.e. when Iwl $- a2+n2.  The complex growth rate a+iw obeys the 
equation 

-a?* 
r + i o  = i w , + ( R , a 2 P 1 ( n 2 + a 2 ) ~ 1 - w ~ ) ~  witho = (3 .6a,  b) 

- 2(n2 +a%) ' 

which indicates that growing solutions only exist if R, exceeds the value 

R, = w:P(n2+a2)a-2. (3 .7)  

For R, < R, two types of stable waves exist, the thermal mode and the hydrodynamic 
mode. The latter mode corresponds to the familiar Rossby wave with w = 2w, in the 
limit R, = 0, while the frequency of the thermal mode vanishes a t  R, = 0. In  that 
limit the buoyancy of a steady field 0 balances the ageostrophic part of the Coriolis 
force. As the density stratification changes from the 'unstable' (i.e. R, > 0) regime 
to the ' stable ' regime (R, < 0) the phase relationship between 8 and the radial velocity 
component changes by 180". In the present context we are primarily interested in 
the growing solution for R, > R, which we call an inertial buoyancy wave. This wave 
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resembles the Rossby wave, but differs from it in that  half of the restoring force 
provided by the vortex-stretching term is balanced by thermal buoyancy. Thus the 
frequency w1 is only half the frequency of Rossby waves. 

The neglect of the dissipative terms is not justified in general since they may be 
important even in the limit of vanishing diffusivities v and K .  Double-diffusive 
effects, which are important in the case of density stratifications owing to the opposite 
effects of salt and temperature gradients (Turner 1973), also play a role in the case 
of convection in a rotating annulus. From the general solution of (3.5) in the marginal 
case B = 0, 

- aq* 
(l+P)(K2+012)’ 

R, = ( ~ ~ + a ~ ) ~ a - ~ + ( 2 1 - - )  *P 2 / ( n 2 + a 2 ) ,  (3.8a,b) 
l + P  

w, = 

it is obvious that for large as well as for small Prandtl numbers R, is generally much 
lower than indicated by (3.66). 

Only for P = 1 do the factors multiplying q*2 in (3.66) and (3.86) become identical, 
which is a characteristic property of double-diffusive phenomena. Since in the limit 
P+O the dispersion relation (3.7) for Rossby waves is recovered from ( 3 . 8 ~ )  the term 
thermal Rossby waves has been introduced for convection in a rotating annulus. In  
Appendix B it will be shown that (3.8) continue to hold in the case of finite inclinations 
qo of the end surface. Only the definitions of R, and q* must be slightly modified. 

From the physical point of view the minimum R, of the Rayleigh number as a 
function of a is of primary interest. In  the asymptotic case of large q* the minimizing 
values a, of the wave number and R, are given by 

a, = qk(l-&n2q$+ ...); R, = &(3+n27$+ ...), 

q p  = 2/2(1+P).  

(3.9) 

where q p  is defined by 
9*p 

It is of interest to note that these relationships for a,, R, become independent of K 
in the limit q* = co (Busse 1970). Different modes corresponding to different radial 
dependences, 

$(n) K sinnn(x+$), n = 1,2 ,  ... , (3.10) 

thus give rise to the same relationships (3.9) for q* N co. We shall return to this point 
in $4. All these modes satisfy stress-free boundary conditions a t  z = ++. But only 
minor changes will occur if rigid boundaries are assumed instead, as has been 
discussed in earlier work (Busse 1970; Busse & Or 1 9 8 6 ~ ) .  

4. Nonlinear properties 
The asymptotic relationships (3.9) indicate two remarkable features of convection 

in a rapidly rotating annulus. First, the azimuthal wavenumber diverges like q*i as 
q* tends to infinity. Since the inhibiting influence of the Coriolis force is proportional 
to a it  could have been expected that modes with a long wavelength in the azimuthal 
direction are preferred. But the buoyancy force increases with a2 and thus a motion 
is preferred whose streamlines deviate strongly from the geostrophic contours or lines 
of constant height of the system. The only strictly geostrophic modes of motion have 
the form of a differential rotation, of course, and the question arises whether such 
a mode for which the inhibiting influence of the Coriolis force vanishes can be induced 
by thermal convection. 
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Before answering this question in the affirmative we discuss a second property of 
relationships (3.9), namely the vanishing dependence of the onset of convection on 
the gap width D. Since R, becomes proportional to a4, the temperature gradient 
ATID for the onset of convection becomes independent of D .  This property is the 
basic reason for the fact that the annulus model provides a good description for 
convection in spheres and in spherical shells where the sidewall boundaries are 
generally far removed. Connected with this property is the already mentioned fact 
that the relationships (3.9) converge in the limit q*-too for modes with radial 
dependences (3.10). This feature suggests that interactions between modes of different 
radial symmetry may become important and that additional bifurcations may occur 
as the Rayleigh number is increased slightly above the critical value. In  considering 
the nonlinear extensions of (3.2) in the case of slightly inclined boundaries 

(4.1 a) 
[ ,+a ,$ax-ax$a, ]  a A,$-q*a ,$ -A~$+Ra,e  = 0, 

(4.1 b) 

we may distinguish two classes among the solutions for which $ is periodic and 
antisymmetric in the variable y* = y-ct, with suitably determined drift rate c. The 
two types of solutions can be characterized by their symmetry properties : 

type1 $(S,Y*) = $(-z,;-?/*), ( 4 . 2 ~ )  

type 11 $(z, y*) = --$(--%Y*), (4.2b) 

where 2ala  is the periodicity interval of the solutions. The distinction (4.2) remains 
valid if no-slip boundary conditions are imposed at z = ,+. Among the linear modes 
(3.10) those with odd n correspond to type I while those with even n give rise to 
solutions of type 11. In order to study symmetry-breaking bifurcations we start with 
the ansatz 

(4.3) 

where the amplitudes A ,  B are assumed to be small and when x is an arbitrary angle 
describing the phase shift between the two components of $o. As long as the 
wavenumber a and p differ, x can be neglected since it vanishes after an appropriate 
shift of the y-coordinate. But in the special case a = j?, x becomes an important 
parameter of the problem. 

7L 

$o = A sina(y-cct) sinx(x++)+B sinP(y-&+X) sin27~(~:+&), 

Expression (4.3) is the first term in an expansion 

$ = ~ 0 + $ . 1 + $ 2 + . . . ?  (4.4) 

where represents cubic 
terms and so on. An analogous expansion is assumed for 8 with Bo given by the 
solution of the linear problem corresponding to (4.1), 

represents terms proportional to AVB2-”, v = 0,1,2, 

Puc sina(y - ct) - (x2 + a2) cos a(y-ct) 
Bo = Aa sinn(z++) 

p2 c2 a2 + (x2 + ,2)2 

(4.5) 
Ppt sin [p(y - t t )  + x] - (7c2 +P2)  cos [p( y - t t )  + x] 

P 2 E 2 P 2 +  (7E2+ /32 )2  
+Bp sin2n(x+&) 

We introduce the ansatz (4.4) into the nonlinear equations (4.1) and solve the 
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inhomogeneous linear problem for $,, 8,. The solvability conditions in the cubic order 
of (4.1) provide the following relationships for R, A ,  B, c and 6:  

[R - R, - foA2 - (90  +fl(P)) B21 A = 0, ( 4 . 6 ~ )  

[R - 2, - g0B2 - (fo + gl(P)) A'] B = 0, (4.6b) 

( c + ~ , a - h ,  B2)A = 0, ( 6 + D o P - k l A 2 )  B = 0, (4.6c, d) 

where 2, and Do are given by (3.8) for R, and w, respectively, after a has been replaced 
by p and x has been replaced by 2x. In writing (4.6e, d) we have used the property 
established in Busse & Or ( 1 9 8 6 ~ )  that the term proportional to A2 in ( 4 . 6 ~ )  and the 
term proportional to B2 in (4.6d) vanish. The constantsf,, go are given by 

(4.7) 

The expressions for f,, g,, h,, k, are rather lengthy and will not be given here. 
In the special case a = p more interesting relationships are obtained in place of 

(4.6). Time-independent relationships can only be obtained if the conditions e = 6 
holds, since otherwise terms proportional to cos [2a(6 - c) t - 2x1 or sin [2a(E - c) t - 2x1 
will appear in the solvability equations. This additional condition can be met since 
the angle x enters the problem as an explicit parameter, 

[R-Ro--f ,A2-(go+fl(P)+f2(P) cos2x+f,(P) sin2x)B2]A = 0, 

[R - 2, -go  B2 - (fa + g,(P) + g2(P) cos 2x + g3( P) sin 2x) A2] B = 0, 

( 4 . 8 ~ )  

(4.8 b)  

(4.8c, d )  

A2 = (R-Ro) f i l ,  c =-@,a, B = 0, ( 4 . 9 ~ )  

B2 = ( R - E o ) g i l ,  c" = -4 0 ,  /3 A = O ,  (4.9b) 

c + w , a  = (h,+h, cos2x+h3 sin2x)B2, c+G0a = ( k l + k z  cos2x+k3 s i n 2 ~ )  A2. 

Besides the 'pure' solutions 

there are ' mixed ' solutions 

A2 = Cfl +fz cos 23: + f 3  sin 2x1 (R- Ro) +SO@, - 20) 

B2 = (g1+g2 cos2x+g3 sin2x) ( R - ~ , ) + f o ( I ? - ~ , )  

N = (go+fl+fz cos2x+f3 sin2x)(fo+g1+g2 cos2x+g3 sin2x)-g0fo. (4.11) 

Solutions (4.9) and (4.10) solve (4.8a, 6) for a = p. In  the case of the mixed solution 
(4.10) the drift rate c and the angle x are determined by (4.8c, d). Solutions (4.9) and 
(4.10) also solve (4.6) for a + p if c o s 2 ~  and s i n 2 ~  are replaced by zero. 

The mathematical structure of problems (4.6) and (4.8) is similar to the 
codimension-2-bifurcations treated by Segel (1 962), by Knobloch & Guckenheimer 
(1983) and by Busse & Or (1986 b) in the case of ordinary Rayleigh-BBnard convection 
with stress-free boundaries. A detailed discussion of the bifurcation structure of the 
solutions outlined above and their stability as a function of the parameters of the 
problem will be given in a forthcoming paper by Busse & Lin. Here we focus attention 
on the interpretation of the numerical results of OB. They indicate that the bifurca- 
tion of the mixed solution (4.10) from the pure solution ( 4 . 9 ~ )  occurs at  some Rayleigh 

( 4 . 1 0 ~ )  N 

(4.10b) N 
where N is given by 
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number greater than R,. At the same point the mixed solution becomes stable and 
solution (4.9a) becomes unstable. Mixed solutions with a + p have not been found 
as stable solutions in the study of OB. Instead the stability analysis of OB indicates 
that solutions involving a third term in the representation (4.3) of the form 
B' sin @(y-Ct) + x] with = 2a-/3 become stable in place of the pure solution (4.8a) 
in some parts of the parameter space, especially for large Prandtl numbers P.  

The mixed solution in the case a = /3 has been called the 'mean flow solution' in 
OB because it is characterized by a strong mean zonal flow. This component of motion 
is described by the y-independent component $, of $,, which is proportional to AB 
and is symmetric in x and thus describes a differential rotation which is antisymmetric 
with respect to the midplane of the layer. There are actually two physically different 
mixed solutions with opposite signs of AB since expressions (4.10) do not specify the 
signs of A or B and since only one of these signs can be changed by an appropriate 
translation in the y-direction. Since these and other properties of the mixed solutions 
such as the heat transport have already been discussed in OB there is no need to 
repeat this discussion. At the values of q* for which the numerical computations have 
been carried out, the agreement with the perturbation theory outlined in this section 
is to within a few percent. 

The transition from the pure solution to the vacillating solution occurs in 
competition to the transition to the meanflow solution. The numerical results of OB 
indicate that the vacillating solution can be described asymptotically by (4 .8)  if 
A ,  B ,  x and c are assumed to be time dependent and if the terms with time derivatives 
obtained in the solvability conditions are added to the equations. Also of particular 
interest are vacillating solutions with a + /3 which appear to be slightly preferred 
according to OB. These solutions can be accommodated in the perturbation approach 
if the term &t) sin (/3(y- ct)  + X ( t ) )  is added to (4.3) as suggested above. 

In  introducing the ansatz (4.3) we did not include explicitly modes of the form 
(3.10) with n 2 3. Those modes are included implicitly, however, in the expansion 
scheme (4.4) since they enter the solutions through the contributions of the order A" 
for odd n 2 3 and B" for even n 2 4. The fact that these modes have asymptotic 
critical Rayleigh numbers only slightly above those for n = 1,2 is likely to reduce 
the range of convergence of the series (4.4) as r* becomes very large. Eventually (4.3) 
should be replaced by an infinite sum of all modes. But the close agreement with the 
numerical results of OB indicates that (4.3) provides a good approximation for 
solutions of (4.1) for a wide range of the parameter space. 

5. Conclusion 
Convection in a rotating cylindrical annulus offers a particularly simple system for 

the study of the transition to complex time dependence in fluid flow. Because the 
spatial dependence is essentially two-dimensional and periodic conditions can be 
assumed in the azimuthal direction, the analysis of the transitions to more complex 
dynamics does not pose the difficulties encountered in other turbulent fluid systems. 
The numerical analysis of OB has demonstrated a number of new features introduced 
by the transitions, and the semi-analytical approach outlined in this paper promises 
to elucidate the mathematical properties of the bifurcating solutions, a t  least in the 
asymptotic regime of high rotation rates. Experimental studies have produced data 
resembling some of the theoretical results (Azouni, Bolton & Busse 1986) such as 
the decrease of the Nusselt number with increasing Rayleigh number found for the 
mean-flow solution. But improvements in the experimental techniques are needed 
before quantitative comparisons can be made with the theoretical predictions about 
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the higher transitions. The opportunity for the study of a system of similar simplicity 
to Rayleigh-BBnard convection or Taylor vortices but with quite different properties 
makes the continuing investigation of thermal Rossby waves and their modifications 
by bifurcations desirable. 

Besides the basic physical features that can be studied in the rotating-annulus 
problem, the possibility of comparisons with observed dynamical features on the 
major planets provides a second motivation. The nonlinear analyses of Busse & Or 
( 1 9 8 6 ~ )  and of OB have exhibited features which have only partly been anticipated 
in the simpler analytical models of planetary convection of Busse (1983a,b). But 
modifications of the basic ideas of those models have not become necessary. The 
essential identity of the effects of inclined boundaries and of a density gradient, which 
is evident from the derivation of the vorticity equation in Appendix A, has been 
emphasized before. Thus the non-Boussinesq effects of the planetary atmosphere will 
merely influence the quantitative comparison between theory and observations. On 
the other hand, the more recent findings suggest new interpretations for observed 
phenomena such as the brown barges and the row of plumes on Jupiter as has been 
pointed out in OB. It is expected that further progress in the study of the asymptotic 
model outlined in $4 will add to these interpretations. 

Appendix A: Derivation of the buoyancy-driven vorticity equation in the 
case of significant variations in density 

Since convection layers in rotating planets and stars are characterized by strong 
variations in density, it is of interest to consider deviations from the Boussinesq 
approximation. Following earlier studies (e.g. Gough 1969) we assume an anelastic 
approximation in which the time derivation in the equation of continuity is neglected, 

v.pou = 0. (A 1 )  

Assuming a static basic state with an arbitrary axisymmetric gravity vector field 
g = - V@ we find, after operating with k * V  x on the Navier-Stokes equation of 
motion, 

($+u*V)c+(2Q+~)(V*u-k-Vk.u) = k.VpxVp-l+k*Vx F, (A2) 

where the angular velocity of the rotating system is given by kS2, F is force of viscous 
friction, and c denotes k*V x u. The term (V x u-kc).Vk*u has been neglected in 
anticipation of the dominant role of the k-component of vorticity. The assumption 
of a basic static state 

1 

Po 
-vpo+g = 0 

is not well justified in most applications, since a thermal wind must be expected in 
planetary and stellar interiors (Busse 1981). But this additional complication will not 
cause any significant change in the formulation of the problem. 

Using (A 3) the definitions 

P = PO+V P = P o ( 1 - Y T d + Y p R ) ,  (A 4) 
where 0 and R describe the deviations of the temperature and pressure distributions 
from the static state we find 
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Terms that are quadratic in f ? , ~  can be neglected since the perturbations of the 
pressure and temperature distributions induced by convection are assumed to be 
small. As in the Boussinesq case (Busse 1970) we further assume that the geostrophic 
balance of the convection motion is approximately satisfied, 

- 1  

Po 
([+2D)kxu x-VX:, 

where 6 is negligible in comparison with 2 0  in most cases, but has been included in 
order to make the argument more general. Using (A l) ,  (A 5) and (A 6), (A 2) can now 
be rewritten in the form 

where constant coefficients yT, yp have been assumed. Only the component of g 
perpendicular to the axis of rotation enters the problem and it is evident that the 
second term in the wavy bracket gives a contribution of the same form as the first 
term after the average over k-direction has been taken and the boundary condition 

L 
qou*i+u.k = 0 a t  z = +- 

2 0  

has been applied. In  particular the case of inward-pointing gravity gives rise to the 
same sign as a positive qo and vice versa. This property agrees with the physical 
picture of inward-moving fluid columns acquiring positive vorticity because of the 
double effects of transverse compression and of longitudinal stretching. The opposite 
effect occurs in outward-moving columns. 

After the average over the z-coordinate in the k-direction has been taken, (A 7)  
agrees basically with (2.4a), except for the neglect of 5 in comparison with 2Q, and 
for the fact that the relationship 

[ =  k.Vx(pc1Vxk$) (A 8) 

replaces the simpler relationship 5 = - A ,  $ of the Boussinesq case where the 
representationpcl V x k$ has been used for the geostrophic component of the velocity 
field. The equation ( 2 . 4 ~ )  hardly needs to be changed if 8 is interpreted as the 
deviation from the distribution of potential temperature. Thus the parameter AT 
refers to the superadiabatic part of the temperature difference across the layer. In 
the limit of isentropic motions of an inviscid fluid, (A 7)  agrees with the potential- 
vorticity equation derived by Glatzmaier & Gilman (1981). 

Appendix B: The case of finite inclination 
When qo assumes values of the order unity the assumption of a quasi-geostrophic 

velocity field (3.1) can no longer be justified. In this section we shall demonstrate, 
however, that the basic dynamics of convection remain unchanged. In particular a 
dispersion relation of the form (3.5) can still be obtained. 

Assuming a y- and t-dependence of the form exp {iay + iwt} and assuming that $ 
and $ satisfy the separation ansatz 

A 2 $  = -a2$-, A 2 $  = -a2$, (B 1) 
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we obtain from the linearized version of (2.4) the following equations: 

(B 2a) 

ia20W+2iaE-la,V+a4W = 0, (B 2b) 

iwPB+a20+- = 0, (B 2c) 

where V = ;a@, W E a2q5 (B 3) 

u v  
a 

have been introduced as new variables and where the assumption D 4 L has been 
made, which is well justified in typical experimental applications and which is also 
appropriate for applications to spherical shells (Soward 1977). The latter assumption 
permits the neglect of z-derivatives in comparison with z- and y-derivatives and also 
implies that a$.# can be neglected to first approximation in comparison with "1/. 

By introducing a second complex representation with the imaginary unit j and by 
defining 

we can combine (4.12) into a single equation 

X =  V + j W  (B 4) 

(B 5 )  

(B 6) 

(B 7)  

[o-ia2+~ia2a-1Ro(iwP+a2)-1]X+2E-1a-1j a,X = p (  V, W ) ,  

p ( V ,  W) = ia2a-2R(iwP+a2)-1[c(V+jW)- v]. 

( X * p ( V ,  W)> = 0, 

where p (  V, W) is given by 

The parameter f; will be determined by the condition 

where the angular brackets indicate the average over the fluid annulus and the 
asterisk indicates the complex-conjugate with respect to both imaginary units, i and j. 
Since we anticipate that p (  V, W) can be regarded as a perturbation for small Prandtl 
numbers P, condition (B 7)  guarantees that p has a minimal influence on the 
eigenvalue o, R of the left-hand side of (4.5). In  other words, a suitably weighted 
average of the buoyancy force is taken into account in the zeroth order of the problem 
such that the remainder of the buoyancy force affects only properties of second order. 

After neglecting the right-hand side of (B 5 ) ,  we obtain the solution 

X = exp {j yz} sin n: (z + +) exp {iay + iot}, 

( iwP+a2)  [io+a2-i2E-1a-1y] -u2a-2f;R0 = 0. 

(B 8) 

(B 9) 

where y satisfies the relationship 

Boundary conditions (2.5) require 

where a$z$ has been neglected in comparison with ag@ as mentioned above. Before 
dispersion relation (B 9) can be evaluated, 6 must be obtained from condition (B 7),  

"1 c=2(i+-siny-  1 . 
YL D 

Using a2 = u2 + n2 and the definition 
a 
a 

f = 4D(LE)-l- arctg 
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we write real and imaginary parts of (B 9) in the form 

w =  - a$ [R, = (lyp)2/(~2+a2), - (B 12a,b)  
( l+P)(??+a2)’--  

which exhibits a close similarity with (3.8). In  the limit of vanishing 7, the definitions 
of 1;1* and $ coincide, [ becomes equal to unity, and results (3.8) and (B 12) agree. 
As 7, increases from zero, IwI increases less rapidly and R, increases more rapidly in 
general than may be expected on the basis of (3.8). 

For low Prandtl numbers P the real part of the right side of (B 5 )  is smaller than 
the imaginary part by a factor of the order P if the minimzing value a, of a is used. 
This property can be easily checked when the asymptotic expressions analogous to 
(3.9) are used. Thus it is evident that neglection of p (  V ,  W )  is justified in the limit 
of small P .  A t  Prandtl numbers of the order unity and larger the neglect of p (  V ,  W )  
cannot be justified rigorously. However, the finite perturbation of (B 9) introduced 
by p ( V ,  W )  will not change the result (B 12) in any significant way. For the 
application of the low-Prandtl-number expansion in the case of convection in a 
spherical shell see Soward (1977). 

R E F E R E N C E S  

AZOUNI, M. A., BOLTON. E. W. & BUSSE, F. H. 1986 Convection driven by centrifugal buoyancy 

BUSSE, F. H. 1970 Thermal instabilities in rapidly rotating systems. J. Fluid Mech. 44, 441460. 
BUSSE, F. H. 1981 Do EddingtonSweet circulations exist ? Geophys. Astrophys. Fluid Dyn. 17, 

215-235. 
BUSSE, F. H. 1982 Thermal convection in rotating systems. In Proc. 9th US National Congress of 

Applied Mechanics, pp. 299-305. American Society of Mechanical Engineers, New York, NY. 
BUSSE, F. H. 1983a A model of mean zonal flow in the major planets. Geophys. Astrophys. Fluid 

Dyn. 23, 1.53-174. 
BUSSE, F. H. 19836 Convection-driven zonal flows in the major planets. PACEOPH, 121, 375- 

390. 
BUSSE, F. H. & OR, A. C. 1986a Convection in a rotating cylindrical annulus: thermal Rossby 

waves. J. Fluid Mech. 166, 173-187. 
BUSSE, F. H. & OR, A. C. 19866 Subharmonic and asymmetric convection rolls. 2. angew. Math. 

Phys. 37, 608-623. 
ELTAYEB, I. A. 1981 Propagation and stability of wave motions in rotating magnetic systems. 

Phys. Earth Planet. Int. 24, 259-271. 
GLATZMAIER, G. A. & GILMAN, P. A. 1981 Compressible convection in a rotating spherical shell. 

111. Analytic model for compressible vorticity waves. Astrophys. J. Suppl. 45, 381-388. 
GOUQH, D. 0.  1969 The anelastic approximation for thermal convection. J. Atmos. Sci. 26, 

448-456. 
KNOBLOCH, E. & GUCKENHEIMER, J. 1983 Convective transitions induced by a varying aspect 

ratio. Phys. Rev. A27, 408-417. 
OR, A. C .  & BUSSE, F. H. 1986 Convection in a rotating cylindrical annulus. Part 2. Transition 

to asymmetric and vacillating flow. J. Fluid Mech. 174, 313-326. 
SEOEL, L. A. 1962 The nonlinear interaction of two disturbances in the thermal convection 

problem. J. Fluid Mech. 14, 97-114. 
SOWARD, A. M. 1977 On the finite amplitude thermal instability in a rapidly rotating fluid sphere. 

Geophys. Astrophys. Fluid Dyn. 9, 19-74. 
TURNER, J. S. 1973 Buoyancy Effects in Fluids. Cambridge University Press. 

in a rotating annulus. Geophys. Astrophys. Fluid Dyn. 34, 301-307. 




